Simulation of Three Dimensional Electrostatic Field Configuration in Wire Chambers : A Novel Approach
نویسندگان
چکیده
Three dimensional field configuration has been simulated for a simple wire chamber consisting of one anode wire stretched along the axis of a grounded square cathode tube by solving numerically the boundary integral equation of the first kind. A closed form expression of potential due to charge distributed over flat rectangular surface has been invoked in the solver using Green’s function formalism leading to a nearly exact computation of electrostatic field. The solver has been employed to study the effect of several geometrical attributes such as the aspect ratio (λ = l d , defined as the ratio of the length l of the tube to its width d) and the wire modeling on the field configuration. Detailed calculation has revealed that the field values deviate from the analytic estimates significantly when the λ is reduced to 2 or below. The solver has demonstrated the effect of wire modeling on the accuracy of the estimated near-field values in the amplification region. The thin wire results can be reproduced by the polygon model incorporating a modest number of surfaces (≥ 32) in the calculation with an accuracy of more than 99%. The smoothness in the three dimensional field calculation in comparison to fluctuations produced by other methods has been observed.
منابع مشابه
Three Dimensional Modeling of Combustion Process and Emissions Formationin Pre and Main Chambers of an Idirect Injection Diesel Enginge
The combustion processes and emission formation in pre and main chambers of a Lister 8.1 IDI diesel are simulated with the Computational Fluid Dynamics (CFD) code. The model includes spray atomization, mixture formation and distribution and subsequently the combustion processes and emissions formation modeling are carried out with considering of flow configurations in two chambers. A part load ...
متن کاملThree-dimensional numerical simulation of temperature and flow fields in a Czochralski growth of germanium
For a Czochralski growth of Ge crystal, thermal fields have been analysed numerically using the three-dimensional finite volume method (FLUENT package). The arrangement used in a real Czochralski crystal growth lab included a graphite crucible, heat shield, heating device, thermal insulation and chamber including two gas outlets. We have considered two cases for calculations, which are configur...
متن کاملElectromagnetic field analysis of novel low cogging force, linear switched reluctance motor, based on 2-D finite element method
This paper deals with electromagnetic design and 2-D (two-dimensional) magnetic field analysis of novel low force ripple linear switched reluctance (LSR) motor. The configuration that has been presented here has a higher number of rotor poles than stator poles, and the purpose of this configuration is to improve the force ripple, which is the weak point of LSRMs. In order to illustrate the ...
متن کاملComputation of Electrostatic and Gravitational Sag in MultiWire Chambers
A numerical method of determining the wire sag in a multiwire proportional chamber used in RICH [1] by solving the second order differential equation which governs the wire stability has been presented. The three point Finite Difference Method (FDM) has generated a tridiagonal matrix equation relating the deflection of wire segments to the force acting on it. The precise estimates of electrosta...
متن کاملThe simulation of novel annular shape on the Performance in Proton Exchange Membrane Fuel Cell
In this article, one-phase and three dimensional computational fluid dynamics analysis was utilized to investigate the effect of annular field pattern of proton exchange membrane fuel cells (PEMFC) with different geometry on the performances and species distribution. This computational fluid dynamics code is used for solving the equation in single domain namely the flow field, the mass conserva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006